References

References

[AR10]

F. Agerkvist and T. Ritter. Modeling viscoelasticity of loudspeaker suspensions using retardation spectra. In Audio Engineering Society Convention 129. Nov 2010. URL: http://www.aes.org/e-lib/browse.cfm?elib=15639.

[BKK66]

R.E. Bellman, H.H. Kagiwada, and R.E. Kalaba. Numerical inversion of laplace transforms and some inverse problems in radiative transfer. J. Atmos. Sci., 23:555, 1966.

[Ben93]

J.E. Benson. Theory and Design of Loudspeaker Enclosures. Synergetic Audio Concepts (with permission from Dr. J.E. Benson and Amalgamated Wireless Australasia Technical Review), 1993.

[Ber54]

L.L. Beranek. Acoustics. McGraw-Hill, New York, 1954.

[BM12]

L.L. Beranek and T.J. Mellow. Acoustics: Sound Fields and Transducers. Elsevier – Academic Press, 2012. URL: https://www.sciencedirect.com/book/9780123914217/acoustics-sound-fields-and-transducers.

[BM19]

L.L. Beranek and T.J. Mellow. Acoustics: Sound Fields, Transducers and Vibration. Elsevier – Academic Press, 2019.

[But30]

S. Butterworth. On the Theory of Filter Amplifiers. Experimental Wireless and the Wireless Engineer, 7:536, 1930.

[CF17]

J. Candy and C. Futtrup. An Added-Mass Measurement Technique for Transducer Parameter Estimation. J. Audio. Eng. Soc., 65:1005, 2017. doi:10.17743/jaes.2017.0040.

[CF18]

J. Candy and C. Futtrup. A Contour Integral Method for Time-Domain Response Calculations. J. Audio. Eng. Soc., 66(5):360, 2018. doi:10.17743/jaes.2018.0017.

[EM95]

A. Edelman and H. Murakami. Polynomial roots from companion matrix eigenvalues. Math Comput., 64:763, 1995.

[Ell78]

B.J. Elliott. Accurate methods for determining the low-frequency parameters of electro-mechanical-acoustic transducers with bli excitation. In Audio Engineering Society Convention 61. Nov 1978. URL: http://www.aes.org/e-lib/browse.cfm?elib=2922.

[Far00]

A. Farina. Simultaneous measurement of impulse response and distortion with a swept-sine technique. In Audio Engineering Society Convention 108. Feb 2000. URL: http://www.aes.org/e-lib/browse.cfm?elib=10211.

[Fut11]

C. Futtrup. Losses in loudspeaker enclosures. In Audio Engineering Society Convention 130. May 2011. URL: http://www.aes.org/e-lib/browse.cfm?elib=15791.

[FC17]

C. Futtrup and J. Candy. Physical Accuracy and Modeling Robustness of Motional Impedance Models. AISE, 2017. URL: https://www.cfuttrup.com/blogspot/ALMA-2017.pdf.

[FC20]

C. Futtrup and J. Candy. Speakerbench. 2020. URL: https://www.loudspeakerindustrysourcebook.com/articles/speakerbench (visited on 2020-10-23).

[GK71]

R.M. Golden and J.F. Kaiser. Root and Delay Parameters for Normalized Bessel and Butterworth Low-Pass Transfer Functions. IEEE Trans. Audio Electroacoust., AU-19:64, 1971.

[GK06]

R.E. Greene and S.G. Krantz. Function Theory of One Complex Variable. American Mathematical Society, 2006.

[Hie12]

H. Hiebel. Suspension creep models for miniature loudspeakers. In Audio Engineering Society Convention 132. April 2012.

[Hog77]

W.J.J. Hoge. A new set of vented loudspeaker alignments. J. Audio. Eng. Soc., 25(6):391–393, Jun. 1977. https://www.aes.org/e-lib/browse.cfm?elib=3364.

[Kai87]

A.J.M. Kaizer. Modeling of the Nonlinear Response of an Electrodynamic Loudspeaker by a Volterra Series Expansion. J. Audio. Eng. Soc., 35:421, 1987.

[KA15]

A. King and F. Agerkvist. State-Space Modeling of Loudspeakers using Fractional Derivatives. J. Audio. Eng. Soc. (abstracts), 2015.

[KJ93]

M.H. Knudsen and J.G. Jensen. Low-frequency loudspeaker models that include suspension creep. J. Audio. Eng. Soc., 41:3, 1993. URL: http://www.aes.org/e-lib/browse.cfm?elib=7015.

[Lea89]

W.M. Leach. Electroacoustic-Analogous Circuit Models for Filled Enclosures. J. Audio. Eng. Soc., 37:586, 1989.

[Lin76]

S.H. Linkwitz. Active crossover networks for noncoincident drivers. J. Audio. Eng. Soc., 24(1):2–8, Jan./Feb. 1976. https://www.aes.org/e-lib/browse.cfm?elib=2649.

[Lin78]

S.H. Linkwitz. Passive crossover networks for noncoincident drivers. J. Audio. Eng. Soc., 26(3):149–150, Mar. 1978. https://www.aes.org/e-lib/browse.cfm?elib=3287.

[MBog91]

Jorge N. Moreno and Henning Bøg. Measurements of Loudspeaker Parameters Using a Laser Velocity Transducer – An Improved Method. In Audio Engineering Society Convention 91. Oct 1991. URL: http://www.aes.org/e-lib/browse.cfm?elib=5553.

[Nov16]

A. Novak. Modeling viscoelastic properties of loudspeaker suspensions using fractional derivatives. J. Audio. Eng. Soc., 64:35, 2016. doi:10.17743/jaes.2015.0091.

[Ols40]

H.F. Olson. Elements of Acoustical Engineering. Van Nostrand, New York, 1940.

[RA10]

T. Ritter and F. Agerkvist. Modelling viscoelasticity of loudspeaker suspensions using retardation spectra. J. Audio. Eng. Soc., 2010.

[SK01]

Ulf Seidel and Wolfgang Klippel. Fast and accurate measurement of the linear transducer parameters. In Audio Engineering Society Convention 110. May 2001. URL: http://www.aes.org/e-lib/browse.cfm?elib=9988.

[Sma72a]

R.H. Small. Closed-Box Loudspeaker Systems-Part 1: Analysis. J. Audio. Eng. Soc., 20:798, 1972.

[Sma72b]

R.H. Small. Direct Radiator Loudspeaker System Analysis. J. Audio. Eng. Soc., 20:383, 1972.

[Sma73a]

R.H. Small. Vented-Box Loudspeaker Systems Part 1: Small-Signal Analysis. J. Audio. Eng. Soc., 21:363, 1973. URL: http://www.aes.org/e-lib/browse.cfm?elib=1967.

[Sma73b]

R.H. Small. Vented-Box Loudspeaker Systems Part IV: Appendices. J. Audio. Eng. Soc., 21:635, 1973. URL: https://www.aes.org/e-lib/browse.cfm?elib=1941.

[Str10]

C.J. Struck. ZFIT: A MATLAB Tool for Thiele-Small Parameter Fitting and Optimization. In Audio Engineering Society Convention 129. Nov 2010.

[Tal79]

A. Talbot. The Accurate Numerical Inversion of Laplace Transforms. J. Inst. Math. Appl., 23:97, 1979.

[Tar02]

V. Tarnow. Measured anisotropic air flow resistivity and sound attenuation of glass wool. J. Acoust. Soc. Am., 111:2735, 2002. doi:doi.org/10.1121/1.1476686.

[Thi74]

A.N. Thiele. Inter-Order Response Characteristics for Simplified Active Filters. Proceedings of the IREE, 0:57, 1974.

[TF11]

K. Thorborg and C. Futtrup. Electrodynamic Transducer Model Incorporating Semi-Inductance and Means for Shorting AC Magnetization. J. Audio. Eng. Soc., 59:612, 2011. URL: http://www.aes.org/e-lib/browse.cfm?elib=15978.

[TF13]

K. Thorborg and C. Futtrup. Frequency Dependence of the Loudspeaker Suspension (A Follow-Up). J. Audio. Eng. Soc., 61:778, 2013.

[TTAF10]

K. Thorborg, C. Tinggaard, F. Agerkvist, and C. Futtrup. Frequency Dependence of Damping and Compliance in Loudspeaker Suspensions. J. Audio. Eng. Soc., 58:472, 2010.

[vL56]

F.J. van Leeuwen. De Basreflexstraler in de akoestiek. Tijdschrift van het Nederlands Radiogenootschap, 21:195, 1956.

[WT07]

J.A.C. Weideman and L.N. Trefethen. Parabolic and hyperbolic contours for computing the bromwich integral. Math Comput., 76:1341, 2007.

[Wei62]

L. Weinberg. Network Analysis and Synthesis. McGraw-Hill, New York, 1962.

[Wil93]

D. Wilson. Relaxation-matched modeling of propagation through porous media, including fractal pore structure. J. Acoust. Soc. Am., 94:1136, 1993.

[Zem65]

A.H. Zemanian. Distribution Theory and Transform Analysis. McGraw-Hill, New York, 1965.

[BullockIII81]

R.M. Bullock III. Thiele, Small and Vented Loudspeaker Design, Part IV, Alternative Alignments. Speaker Builder Magazine, 81:18, 1981.